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We present the generalized forms of Parrondo’s paradox existing in fractional-order nonlinear systems. The gener-
alization is implemented by applying a parameter switching (PS) algorithm to the corresponding initial value problems
associated with the fractional-order nonlinear systems. The PS algorithm switches a system parameter within a specific
set of N ≥ 2 values when solving the system with some numerical integration method. It is proven that any attractor of
the concerned system can be approximated numerically. By replacing the words “winning” and “loosing” in the classical
Parrondo’s paradox with “order” and “chaos”, respectively, the PS algorithm leads to the generalized Parrondo’s paradox:
chaos1 + chaos2 + · · ·+ chaosN = order and order1 +order2 + · · ·+orderN = chaos. Finally, the concept is well demon-
strated with the results based on the fractional-order Chen system.
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1. Introduction
Discovered in 1996 and named after the Spanish physicist

Parrondo, Parrondo’s paradox states that setting up two losing
games together can result in a winning scenario.[1,2] It means
that, by alternating two losing strategies in a deterministic way,
a positive game can be obtained. Symbolically, we thus have
“losing + losing = winning”. For example, in a chess game, the
sacrifice of some chess pieces can lead to winning a game; in
the stock market, Parrondo’s game offers a possibility to make
a profit by investing in losing stocks.

Though it looks contradictory and not every scientist
agrees with its principle,[3] Parrondo’s paradox has still re-
ceived a lot of attention and become an active topic in many
research areas, such as minimal Brownian ratchet,[4] discrete-
time ratchets,[5] game theory,[6] and molecular transport,[7] to
name a few.

In receipt of the 1998 Steele Prize for Seminal Contri-
butions to Research, Zeilberger responded that “... combin-
ing different and sometimes opposite approaches and view-
points will lead to revolutions. So the moral is: Don’t look
down on any activity as inferior, because two ugly parents
can have beautiful children, ...”. Indeed, we have witnessed
a large number of research works showing the alternations of
losing–winning, weakness–strength, order–chaos, and so on,
in mathematical systems, control systems, quantum systems,
biological systems, and physical systems. These counterintu-
itive results seem to be typical, not only in computational ex-
periments but also in nature, where the underlying system dy-
namics are characterized by parameter switching either in an

accidental or an intentional way. A review of Parrondo’s para-
dox can be found in Ref. [8] and the issues about Parrondo’s
paradox were recently investigated in Ref. [9].

In Ref. [10], it was proven that Parrondo’s paradox can
be generalized, for which a “winning” or “losing” result is ob-
tained by combining N > 2 “losing” or (and) “winning” strate-
gies. The generalization was modeled and demonstrated by
applying a parameter switching (PS) algorithm onto nonlin-
ear ordinary differential equations,[10–12] logistic map,[13] and
fractals.[14]

In this paper, we adopt the PS algorithm to fractional-
order differential equations (FDEs), aiming to extend the gen-
eralized Parrondo’s paradox to this interesting class of non-
linear systems. Recently, the fractional-order systems have
received a lot of attention due to the fact that they are more
accurate in modeling many practical systems (see Refs. [15]–
[17]). Being a counterpart of the integer-order systems,
the fractional-order systems are rich in complex dynamics,
such as bifurcations, chaos, hyperchaos, etc.[18–21] The con-
trol and synchronization issues of these systems have also
been studied.[18–20,22] To deal with the associated FDEs, dif-
ferent versions of fractional derivatives, such as Grunwald–
Letnikov fractional derivative, Reimann–Liouville fractional
derivative, and Caputo fractional derivative,[23] are possible.
Since analytical solutions of nonlinear FDEs are usually not
obtainable, the use of the numerical integration method such
as the Adams–Basforth–Moulton predictor-corrector scheme
(ABM)[24] is common. It is also possible to have a phys-
ical realization of the FDE which is mainly based on the
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frequency domain approximation.[25] This method has been
widely applied,[19,21] yet there are still many arguments about
the approximation.[26]

The rest of this paper is organized as follows. Section 2
describes the PS algorithm for FDEs. Section 3 presents the
implementation of the PS algorithm for modeling the gener-
alization of Parrondo’s game. The results are demonstrated
with an example of fractional-order Chen’s system, in which
Parrondo’s paradox generalization is considered. Finally, the
conclusion section closes the paper.

2. PS algorithm for FDEs
Let us consider the following Caputo-type autonomous

initial value problem (IVP)

Dq
∗𝑥= 𝑓(𝑥), 𝑥(0) = 𝑥0 ∈ Rn, t ∈ I = [0,T ], (1)

where 𝑓 : Rn→ Rn is expressed as

𝑓(𝑥) = 𝑔(𝑥)+ p𝐴𝑥, (2)

with 𝑔 : Rn → Rn a Lipschitz continuous nonlinear function,
𝐴∈Rn×Rn, and p∈R the bifurcation parameter. The Dq

∗ de-
notes the Caputo differential operator of order 0 < q≤ 1 with
starting point 0 (it is also known as smooth fractional deriva-
tive with starting point 0),[16,23,27] i.e.,

Dq
∗𝑥(t) =

1
Γ(1−q)

∫ t

0
(t− τ)−q d

dt
𝑥(τ)dτ,

with Γ being the Euler’s Gamma function

Γ(z) =
∫ t

0
tz−1 e−t dt, z ∈ C, Re(z)> 0.

Remark 1 (i) Recently, some researchers questioned the
appropriateness of the use of the initial conditions in the Ca-
puto derivative. These comments are more based on a philo-
sophical point of view than a mathematical one (see Ref. [28]).
On the other hand, it should be emphasized that, in practical
(physical) problems, physically interpretable initial conditions
are necessary. Thus, the Caputo derivative, as a fully justi-
fied tool, well suits this requirement, and the initial condition
with fractional derivatives[29] can be avoided. (ii) The class
of systems modeled by Eqs. (1) and (2) comprises systems of
fractional-order Lorenz, Chen, Chua, Rössler, and many oth-
ers.

In order to integrate numerically IVP (1), we adopt the
fractional Adams–Bashforth–Moulton (ABM) method, which
has been discussed in Ref. [29] and analyzed in detail in
Ref. [30].

Given a set of parameters, PN = {p1, p2, . . . , pN} with
N ≥ 2, and weights mi ∈ N∗ associated with each pi, the pa-
rameter p in Eq. (2) is switched within PN while the IVP is

numerically integrated in the following manner: for the first
m1 integration steps of length h (where h is the fixed step size
specified in the fractional ABM), p= p1; for the next m2 steps,
p = p2; and so on, until for the last mN steps, p = pN . The al-
gorithm repeats with p = p1 for m1 steps, then with p = p2 for
m2 steps, and so on, until the entire time interval I is covered.

Given N, PN , and weights mi, i = 1,2, . . . ,N, we here-
after simply denote the corresponding PS algorithm as

[m1 p1,m2 p2, . . . ,mN pN ], (3)

assuming that a fixed h is given.
For example, the scheme [2p1,1p2] with a fixed h means

that the IVP (1) is solved with p = p1 for the first two in-
tegration steps and p = p2 for the next step using numerical
integration and so on.

By applying expression (3), the obtained “switched” solu-
tion of IVP (1) will converge to the solution of the “averaged”
equation (referred to as the “averaged” solution) obtained for
p = p∗ computed by

p∗ =
∑

N
i=1 mi pi

∑
N
i=1 mi

. (4)

From Eq. (4), it is easily observed that p∗ is the time-average
of PN .

The convergence of the switched solution to the averaged
solution under the PS algorithm for the integer-order systems
can be proved with the average theorem[10] or based on the
convergence of the used numerical method.[11] Numerically,
the convergence can also be determined by characteristic tools
for dynamical systems, such as checking the match between
the two trajectories (switched and averaged) in phase plots,
time series, Poincaré sections, etc, as for the fractional-order
Chen system considered in this paper.

Remark 2 (i) As will be shown in Section 3, the value
p∗ given by the relation (4) can be obtained in several ways,
depending on PN and the weights mi, i = 1,2, . . . ,N, in
scheme (3). (ii) By denoting αi = mi/∑

N
i=1 mi, equation (4)

can be rewritten as p∗ = ∑
N
i=1 αi pi with ∑

N
i=1 αi = 1. For any

set PN and weights mi, i = 1,2, . . . ,N, p∗ is always within
the interval (pmin, pmax) due to its convexity property, where
pmin ≡min{PN} and pmax ≡max{PN}. Reversely, the only
condition to obtain a specific value of p∗ is to choose some
set PN , such as p∗ ∈ (pmin, pmax). (iii) The bounds for h are
determined by the numerical integration method in-use (the
fractional ABM utilized here).

The applications of the PS algorithm are wide. For ex-
ample, it is possible to obtain the numerical approximation of
some attractors of a system modeled by the IVP (1), whose
parameter p = p̃ cannot be set for some reason. By choosing
PN and mi, i = 1,2, . . . ,N, such that the right-hand side of
Eq. (4) gives p̃, the switched solution can lead to the targeted
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attractor corresponding to p̃, with the use of the PS algorithm.
It should also be noted that the simplicity of this approach, in
providing an approximation of any solution of Eq. (1), resides
in the linear dependence on p as given in the term p𝐴𝑥.

3. PM algorithm and generalization of Par-
rondo’s paradox
Let us consider a system modeled by IVP (1) and as-

sume that IVP (1) exhibits a characteristic behavior (attrac-
tor) which is either chaotic or regular for every p = pi ∈PN ,
i = 1,2, . . . ,N. Due to the uniqueness of solutions induced
by the Lipschitz property, each pi will correspond to a unique
behavior denoted by chaos or order, given that the initial con-
dition is fixed.

Now, the following notations for the numerically approx-
imated attractors are defined (after neglecting first transients):
• Api denotes the attractor corresponding to pi;
• A∗ is the “switched attractor” obtained by the PS algo-

rithm;
• Ap∗ is the “averaged attractor” obtained from IVP (1)

with p = p∗.
If in the known form of Parrondo’s paradox “losing +

losing = winning”, we denote chaos := losing and order :=
winning, one obtains chaos+ chaos = order. If one consid-
ers the system (1) for the case of N = 2 and P2 = {p1, p2},
all possible cases obtained with the PS algorithm are tabu-
lated in Table 1. As observed, only the second and the fifth
cases can be referred to as Parrondo’s paradox. In the second
case, using the PS algorithm, the obtained attractor A∗ approx-
imates the averaged attractor Ap∗ which is chaotic even though
Ap1 and Ap2 are regular motions. In this case, one can affirm
that the PS algorithm models the variant of Parrondo’s game:
order1 + order2 = chaos. Reversely, in the fifth case, the re-
sultant attractor by the PS algorithm, A∗, approximates the av-
eraged attractor Ap∗ , which is a regular motion, even if Ap1

and Ap2 are chaotic. This leads to another form of Parrondo’s
game: chaos1 + chaos2 = order.

Table 1. Possible results with PS algorithm for N = 2.

Ap1 +Ap2 = A∗ Parranodo’s parradox

order1 +order2 = order3 No

order1 +order2 = chaos Yes

order1 + chaos = order2 No

order+ chaos1 = chaos2 No

chaos1 + chaos2 = order Yes

chaos1 + chaos2 = chaos3 No

It is interesting to point out that specific attractor, either
stable or chaotic, can be obtained with Parrondo’s paradox,
despite the original behaviors corresponding to pi ∈PN . By
referring to the results in Table 1, Parrondo’s paradox can be
viewed as a kind of “chaos-control”-like or “anticontrol”-like

action. The procedures are as follows: suppose that one in-
tends to obtain a regular motion corresponding to some p∗,
which is unavailable starting from a set PN that generates
only chaotic motions. Then, by choosing an adequate set of
weights mi such that the right-hand side of Eq. (4) gives the
desired value p∗ (see Remark 2 (ii)), the desirable ordered
motion can be approximated by the PS algorithm and one ob-
tains a chaos-control-like phenomenon. If the desirable attrac-
tor is chaotic, and PN generates regular motions, Parrondo’s
paradox is an analogy of the anticontrol-like phenomenon (see
Ref. [31]). Obviously, relaxed forms of Parrondo’s paradox
(cases 1, 3, 4, and 6 in Table 1) can be considered as control-
like or anticontrol-like schemes.

When one considers a general case of N ≥ 2, the follow-
ing property is held, stating the existence of the generalized
Parrondo’s paradox.

Property 1 Consider a dynamical system modeled by the
IVP (1), a set PN with N ≥ 2 and p∗ ∈ (pmin, pmax). Then, the
following properties are obtained:

(i) If p∗ corresponds to a stable periodic motion, and is
intercalated by some values of pi belonging to some chaotic
windows, then the following generalized Parrondo’s paradox
exists:

chaos1 + chaos2 + · · ·+ chaosN = order,

where chaosi corresponds to pi, i = 1,2, . . . ,N and order cor-
responds to p∗.

(ii) If p∗ corresponds to a chaotic motion, and is interca-
lated by some values pi belonging to some periodic windows,
then the following generalized Parrondo’s paradox exists:

order1 +order2 + · · ·+orderN = chaos.

Proof The proof of (i) is given as follows. Assuming
that elements in PN all belong to some different chaotic win-
dows and p∗ ∈ (pmin, pmax), the convexity property of p∗ (Re-
mark 2 (ii)) assures that, there exists a suitable set of weights,
mi, i = 1,2, . . . ,N, such that equation (4) is satisfied. Under
the convergence of the PS algorithm, the switched solution,
determined by the values pi, i = 1,2, . . . ,N, will tend to the
averaged solution corresponding to p = p∗. As a result, the
corresponding attractor A∗ will approximate the averaged at-
tractor Ap∗ . That ends the proof of (i). The proof of (ii) can be
obtained in a similar way.

Remark 3 As is known, the numerical methods for
fractional-order equations consider the whole or partial his-
tory of the variables. Therefore, in the analytical proof of the
convergence of the PS algorithm, which modifies these values
at every integration step, this phenomenon has to be consid-
ered. On the other hand, the convergence for fractional-order
systems can also be verified by characteristic computational
tools for dynamical systems such as phase plots, time series,
Poincaré sections, and so on.
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4. Parrondo’s games in fractional-order Chen
system
In the following, we focus on the incommensurate

fractional-order Chen system,[32] which can be expressed as

Dq1
∗ x1 = p(x2− x1),

Dq2
∗ x2 = (c− p)x1− x1x3 + cx2,

Dq3
∗ x3 = x1x2−bx3, (5)

where

𝑓(𝑥) =

 0
cx1 + cx2− x1x3

x1x2−bx3

 , 𝐴=

−1 1 0
−1 0 0
0 0 0

 ,

with b = 3, c = 28, and q = [0.98,0.95,0.9]. The correspond-
ing dynamics are illustrated by the bifurcation diagram shown

in Fig. 1.
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Fig. 1. Bifurcation diagram of fractional-order Chen’s system (5).
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Fig. 2. (color online) Parrondo’s paradox (chaos-control-like): chaos1 + chaos2 = order, modeled by the PS algorithm under the scheme
[1p1,1p2], with p1 = 38.10 and p2 = 38.50: (a) position of the underlying attractors in the parameter space, (b) phase plot of Ap1 , (c) phase
plot of Ap2 , (d) phase overplot of the switched attractor A∗ (red) and the averaged attractor Ap∗ (blue), (e) time series of A∗ and Ap∗ .
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We consider cases which model Parrondo’s variants,
i.e., the chaos-control-like and chaos-anticontrol-like actions
(the second and the fifth cases in Table 1) via the PS al-
gorithm. The program code used to carry out the numer-
ical integration of IVP (1) is an incommensurate variant
of FDE12 in MATLAB,[33,34] implementing the fractional
Adams–Bashfroth–Moulton method. The integration time in-
terval is [0,200], i.e., T = 200, and the step size is h = 0.002,
which is commonly used in the fractional ABM method.[30]

In order to illustrate the match of the switched solution to
the averaged solution, we overplot the underlying attractors in
the phase space after ignoring the first transients. The match-
ing between the two attractors shows the correctness of the
results.

Let us first consider the stable cycle corresponding to
p∗ = 38.30. The periodic cycle can be approximated with
the PS algorithm, for example, using [m1 p1,m2 p2] with P2 =

{38.10,38.50} and m1 = m2 = 1 (Fig. 2(a)). The correspond-
ing chaotic attractors A38.10 and A38.50 are depicted in Figs.
2(b) and 2(c), respectively. From Eq. (4), one can obtain
p∗ = (1× 38.10+ 1× 38.50)/(1+ 1) = 38.30. As shown in
Fig. 2(d), by applying the PS algorithm, the switched attrac-
tor A∗ (plotted in red) well matches with the averaged attractor
Ap∗ (in blue). The perfect match is also illustrated by overplot-
ting the two time series, as given in Fig. 2(e). Therefore, the
existence of the following classical form of Parrondo’s para-
dox can be concluded:

chaos1 + chaos2 = order,

where chaos1,2 correspond to the chaotic attractors Ap1 and
Ap2 , respectively, and order corresponds to the stable cycle
Ap∗ . Since a stable cycle is obtained by the PS algorithm, it
can be considered as a kind of chaos control-like action.
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Fig. 3. (color online) Generalized Parrondo’s paradox (chaos control-like): chaos1 + · · ·+ chaos6 = order, modeled by the PS algo-
rithm under the scheme [2p1,3p2,1p3,2p4,3p5,1p6], with P6 = {37.10,37.90,38.00,38.60,39.00,39.50}.

It should be emphasized that, the scheme for approx-
imating an attractor is not unique, many different alterna-
tives are possible with the PS algorithm (see Remark 2 (i)).
For example, the same stable cycle in the previous example
can be obtained by the scheme [2p1,3p2,1p3,2p4,3p5,1p6]

with P6 = {37.10,37.90,38.00,38.60,39.00,39.50}. It can
be easily proved that the relation (4) leads to the same value
of p∗ = 38.30. It is interesting to point out that the attractors,
corresponding to elements in P6, are all chaotic while the ob-
tained switching attractor is a stable cycle (Fig. 3). Thus, we

have the following generalized Parrondo’s paradox:

chaos1 + chaos2 + · · ·+ chaos6 = order.

Now, if we choose another set, P3 = {38.30,39.38,39.78},
for which the corresponding attractors of its elements are sta-
ble cycles (see Fig. 4(a)), and assume that m1 = m2 = 1 and
m3 = 2, a chaotic motion is then resulted with the PS algorithm
(Fig. 4(b)), exhibiting the following generalized Parrondo’s
paradox:

order1 +order2 +order3 = chaos.

010505-5



Chin. Phys. B Vol. 25, No. 1 (2016) 010505

Therefore, the PS algorithm executes a chaos-anticontrol-like
action under the scheme [1p1,1p2,2p3]. As expected, in the
case of anticontrol, the time interval I must be sufficiently
large (here I = [0,300]), since the chaotic attractors can only
theoretically be obtained with t→∞. However, from the phase
plot (Fig. 4(b)) and the Poincaré section with the plane π:

x3 = 22 (Fig. 4(c)), one can deduce that there exists a good
match between the two attractors A∗ and Ap∗ .

The PS algorithm can be successfully numerically applied
in many systems of fractional-order continuous or piecewise
continuous (see the case of the new piecewise linear Chen sys-
tem of fractional-order[12]).
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Fig. 4. (color online) Generalized Parrondo’s paradox (anticontrol-like): order1 +order2 +order3 = chaos, modeled by the PS algo-
rithm under the scheme [1p1,1p2,2p3], with P3 = {39.38,39,78,38.30}: (a) position of the underlying attractors in the parameter
space, (b) the switched attractor A∗ (red) and the averaged attractor Ap∗ (blue) overplotted in the phase space, and (c) the Poincaré
section of the attractors on the plane x3 = 22.

5. Conclusion
We have shown via the PS algorithm that Parrondo’s

paradox and its generalizations occur in fractional-order sys-
tems. By having N ≥ 2 bifurcation parameters, the PS al-
gorithm leads to the generalized variant of Parrondo’s game:
chaos1 + chaos2 + · · ·+ chaosN = order, which can be consid-
ered as a chaos-control-like. Another form of generalized
Parrondo’s paradox is order1 +order2 + · · ·+orderN = chaos,
which can be considered as a chaos-anticontrol-like. The sim-
plicity of the PS algorithm resides in the linear dependence on
p as given in the term p𝐴𝑥. The Parrondo’s games are well
illustrated numerically with the fractional-order Chen system.
An open issue remains, i.e., to analytically prove the conver-
gence of the PS algorithm for the case of fractional order non-
linear systems.
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